VERIS ACCELABAR®
SUPERIOR FLOW MEASUREMENT ACCURACY
The Unique Accelabar® Flow Meter

The Accelabar® is a new and unique flow meter that combines two differential pressure technologies to produce operating ranges never before attainable in a single flow meter. It is capable of generating high differential pressures for measuring gas, liquids and steam at turndowns previously unattainable—with no straight run requirements.

How the Accelabar® Works

The Accelabar® consists of a unique toroidal nozzle design and a Verabar® averaging pitot. The nozzle has a patented straight run “settling distance” that accelerates, linearizes and stabilizes the velocity profile sensed by the Verabar®. The Verabar® located within the nozzle accurately measures and significantly increases the differential pressure output to increase the operating range (turndown). The Accelabar® has a constant flow coefficient and produces an accuracy of up to ±0.50%.

Other manufacturers claim high accuracy, but over a limited turndown.

No Straight Run Required

The Accelabar® can be used in extremely limited straight run piping configurations. The straight run is integral to the meter. The stabilization and linearization of the velocity profile within the throat of the nozzle eliminates the need for any upstream run.

Engineering Specifications

- Low velocity flow rates
- High accuracy: to ± 0.50%
- Repeatability: ±0.050%
- Verified flow coefficients
- No calibration required
- Extended turndown
- No straight run requirements
- Low permanent pressure loss
- Mass or volumetric flow

Actual Application (see data on page 3)

<table>
<thead>
<tr>
<th>Application:</th>
<th>3” Sch 40 Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure/ Temperature:</td>
<td>50 PSIG/70°F</td>
</tr>
<tr>
<td>Max/Min Flow Rate:</td>
<td>60,000 SCFH/1,000 SCFH</td>
</tr>
<tr>
<td>Flow Turndown:</td>
<td>60:1</td>
</tr>
<tr>
<td>Straight Run:</td>
<td>0”</td>
</tr>
</tbody>
</table>

Verabar® Provides the Accuracy

The proven technology of the Verabar® makes the Accelabar® work. It accurately measures the flow rate within the nozzle. Its unique bullet shape, constant flow coefficient, solid one-piece construction, non-clog design and signal stability make it the only design capable of producing the overall performance.

US Patent No. 6,868,741 B2 and various foreign patents pending.
VERIS Accelabar® ...Performance Characteristics

Comparative Analysis vs. Other Flow Meters

The Accelabar® fills the need not presently being filled by other flow meters for applications that:

- Do not have sufficient velocity to produce a readable signal or sufficient turndown
- Require the highest accuracy over an extended range
- Have little or no straight run piping before the meter

The Accelabar® performance characteristics far exceed those of other DP meters, vortex meters and many other flow meters.

These charts show the actual performance characteristics of the Accelabar® versus other flow meters based on the following flow conditions:

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size</td>
<td>3" Sch 40</td>
</tr>
<tr>
<td>Max Flow</td>
<td>60,000 SCFH</td>
</tr>
<tr>
<td>SG</td>
<td>0.6</td>
</tr>
<tr>
<td>Pressure</td>
<td>50 psig</td>
</tr>
<tr>
<td>Temperature</td>
<td>70°F</td>
</tr>
<tr>
<td>Pipe Line Velocity</td>
<td>74 ft/sec</td>
</tr>
</tbody>
</table>

Flow Conditions

Flow Turndown

- **Accelabar**
 - Maximum & Minimum: 60
- **Orifice Plate**
 - Cone Type: 4
 - Averaging Pitot: 25
- **Cone Type**
 - Averaging Pitot: 6

Flow Turndown

- **Accelabar (3")**
 - Vortex (3")
 - Flow Turndown: 60

Minimum Straight Run Requirements

- **Accelabar**
 - 0
- **Vortex**
 - 30
- **Orifice Plate**
 - 20
- **Cone Type**
 - 3
- **Averaging Pitot**
 - 8

Permanent Pressure Loss

- **Accelabar**
 - 35
- **Orifice Plate**
 - 60
- **Cone Type**
 - 75

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com/veris for up-to-date information.
Verified Accuracy and Flow Coefficients

Empirical TEST DATA from independent laboratories verified an analytical model and flow coefficients as constant and independent of Reynolds Number, and within +/- 0.5% of the predicted value over an extended turndown in flow. This eliminates the need for calibration.

The Proof Is In The Data

Many flow meters claim high accuracy and rangeability or turndown. However, few manufacturers define their limitations and even fewer can support it with actual test data. The tests below show the performance capabilities of the Accelabar®.

Tested at CEESI (an independent Flow Lab)

Results
The Accelabar® produced a DP of 306” H₂O at 145 ACFM. An accuracy of +/- 0.75% over an extended Reynolds number range. No other flow meter is capable of these operating ranges.

Test Specifications
The Accelabar® was tested immediately downstream of a valve, tee and expander assembly with no straight run upstream.

No Straight Run Test Comparison

Test Data
Empirical TEST DATA from independent laboratories verified an analytical model and flow coefficients as constant and independent of Reynolds Number, and within +/- 0.5% of the predicted value over an extended turndown in flow. This eliminates the need for calibration.

Results
The Accelabar® produced a DP of 306” H₂O at 145 ACFM. An accuracy of +/- 0.75% over an extended Reynolds number range. No other flow meter is capable of these operating ranges.

Test Specifications
The Accelabar® was tested immediately downstream of a valve, tee and expander assembly with no straight run upstream.

Results
The short run test plotted with the standard straight run test verifies there is no shift in the flow coefficient.
VERIS Accelabar® ...Models and Specifications

Ready to Install
The Accelabar® is a complete flow meter ready to install. It comes complete with single or dual transmitters depending on the turndown requirements.

An optional RTD is supplied in a Thermowell for dynamic compensation (required for use with multivariable transmitter).

Specifications

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Repeatability</th>
<th>Sensor, Body & Flange</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0.50%</td>
<td>±0.050%</td>
<td>316SS</td>
</tr>
</tbody>
</table>

Accelabar® Model Selection

1. Furnish your flowing conditions. A flow calculation is required to determine the DP and verification of the operating limits.
 - Each meter size has a standard beta ratio sized for the optimal operating range.
 - The maximum operating limits are determined by the Accelabar® flow calculation.

2. If your flowing conditions exceed the operating limits, a larger or smaller model (meter size) must be selected.

Flowing Conditions

<table>
<thead>
<tr>
<th>General Data</th>
<th>Fluid Parameters</th>
<th>Maximum</th>
<th>Normal</th>
<th>Minimum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag number</td>
<td>Flow Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe size & schedule or exact ID & wall thickness</td>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid name:</td>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Density is not required for steam applications.

Chart A

<table>
<thead>
<tr>
<th>Meter Size</th>
<th>Verabar Sensor</th>
<th>Face to Face “L”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 150#</td>
<td>Class 300#</td>
<td>Class 600#</td>
</tr>
<tr>
<td>2” (DN50) -05 1/2”</td>
<td>8.75” (222.3mm)</td>
<td>9.38” (238.2mm)</td>
</tr>
<tr>
<td>3” (DN80) -05 1/2”</td>
<td>13.78” (350.0mm)</td>
<td>14.53” (369.0mm)</td>
</tr>
<tr>
<td>4” (DN100) -05 1/2”</td>
<td>15.15” (384.8mm)</td>
<td>15.90” (403.9mm)</td>
</tr>
<tr>
<td>6” (DN150) -10 1/2”</td>
<td>19.15” (486.4mm)</td>
<td>19.90” (505.5mm)</td>
</tr>
<tr>
<td>8” (DN200) -10 1/2”</td>
<td>21.40” (543.6mm)</td>
<td>22.15” (562.6mm)</td>
</tr>
<tr>
<td>10” (DN250) -10 1/2”</td>
<td>23.15” (588.0mm)</td>
<td>24.40” (619.8mm)</td>
</tr>
<tr>
<td>12” (DN300) -10 1/2”</td>
<td>26.17” (664.7mm)</td>
<td>27.78” (705.6mm)</td>
</tr>
</tbody>
</table>

*Face to face dimensions nominal. Custom lengths available.
Design, Materials, Weights and Performance Ratings

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com/veris for up-to-date information.

Veris Accelabar® ...Ordering Information

Model: Accelabar 316SS

<table>
<thead>
<tr>
<th>AFS</th>
<th>Flanged Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFS</td>
<td>Bevel for Weld</td>
</tr>
<tr>
<td>ABS</td>
<td>MNPT Threaded Ends (2” meter only)</td>
</tr>
</tbody>
</table>

User Mating Pipe Size and Schedule or Exact ID and Wall Thickness

<table>
<thead>
<tr>
<th>Code</th>
<th>User Mating Flange (Model AFS Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150# ANSI Class</td>
</tr>
<tr>
<td>300</td>
<td>300# ANSI Class</td>
</tr>
<tr>
<td>600</td>
<td>600# ANSI Class</td>
</tr>
</tbody>
</table>

If other than ANSI, specify Standard (DIN, JIS) Size and Rating

Flange Material

<table>
<thead>
<tr>
<th>Code</th>
<th>Flange Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Carbon Steel</td>
</tr>
<tr>
<td>S</td>
<td>Stainless Steel</td>
</tr>
</tbody>
</table>

Accelabar Meter Size

Important: If the selected meter size is larger or smaller than the user’s mating pipe and flange, expanders or reducers are required. Consult the factory for price and delivery.

#### Code	Metric Size
05 | 7/16” (11mm)
10 | 7/8” (22mm)

Pipe Orientation

<table>
<thead>
<tr>
<th>Code</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Horizontal</td>
</tr>
<tr>
<td>V</td>
<td>Vertical</td>
</tr>
</tbody>
</table>

Instrument Head Connections (Select Remote or Direct Mount Transmitter—Sold Separately)

- **Direct Mount Transmitter** (Flanged 450°F/232°C Max.)
- **Remote Mount Transmitter** (1/2” NPT)

Manifold

Transmount

Valve

Regular

Parallel

Integral

M

F

T

R

P

Manifolds (Optional)

Instrument Valves (Optional)

Direct Mount

<table>
<thead>
<tr>
<th>3-Valve</th>
<th>5-Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Seat</td>
<td>Soft Seat</td>
</tr>
<tr>
<td>Hard Seat</td>
<td>Hard Seat</td>
</tr>
</tbody>
</table>

Remote Mount

<table>
<thead>
<tr>
<th>Needle</th>
<th>Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Seat</td>
<td>Soft Seat</td>
</tr>
<tr>
<td>Hard Seat</td>
<td>Hard Seat</td>
</tr>
<tr>
<td>1/2” NPT</td>
<td>1/2” NPT</td>
</tr>
</tbody>
</table>

#### Code	RTD in Thermowell
H1 | Hazardous Location, Class 1 Div 1, Explosion Proof |
H2 | Hazardous Location, Class 1 Div 2, Non-Incendive Wiring |
HT | High Temperature (500°F to 900°F, 260°C to 482°C) |
NH | Non-Hazardous Location |

#### Code	Connection Cable to Transmitter (Direct Mount Only)
XP | Explosion Proof (hazardous locations) |
N4 | NEMA 4 |

For Transmitter Selection, see Page 7.
Transmitter Selection

Accelabar accuracy is percent of rate. The Accelabar maintains a constant flow coefficient over a wide range of flow rates and differential pressures.

DP transmitter accuracy is percent of scale. While most Accelabar installations are equipped with one DP transmitter, some applications requiring superior accuracy over an extreme DP turndown may require a dual DP transmitter installation.

Installation Orientation

Direct Mount

- **Gas**
 - Mount to top of pipe
- **Steam & Liquid**
 - Mount to bottom of pipe

Remote Mount

- **Gas**
 - Mount to top of pipe
 - **Instrument tubing & fittings not included**
- **Steam & Liquid**
 - Mount to bottom of pipe
 - **Fill tee (steam only)**
 - **Instrument tubing & fittings not included**

VERIS Accelabar...The Best Choice in Flow Meters

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit armstronginternational.com/veris for up-to-date information.