Considerations in Selecting Steam Humidifiers

Electric Or Gas-Fired Steam Humidifiers
When steam is not available, self-contained electric or gas-fired humidifiers can meet low-capacity requirements. The primary consideration in selecting this type of humidifier is its ability to work with wide ranges in water quality. Ionic bed electric or gas-fired humidifiers are frequently selected for this capability.

Direct Injection Steam Humidifiers
An evaluation of three performance characteristics is essential to understand the advantages steam holds over other humidification media:

- Conditioning
- Control
- Distribution

Figure 20-1. Steam Panel Humidifier

The humidifier must condition the steam so that it’s completely dry and free of significant particulate matter. Response to control signals must be immediate, and modulation of output must be precise. Distribution of steam into the air must be as uniform as possible. Inadequate performance in any of these areas means the humidifier will not meet the basic humidification requirements.

Direct injection steam humidifiers are available in three basic types: specially designed steam panels, steam cups and the steam separator.

Specially designed steam panel systems incorporate advanced engineering in addressing unique applications where vapor trail is of prime concern.

Steam cup humidifiers receive steam from the side of the cup, which theoretically permits the condensate to fall by gravity to the steam trap. However, in practice a great deal of the liquid moisture in the steam goes into the air flow, and the steam itself is poorly distributed.

The steam separator is a more sophisticated device which, when properly designed, meets essential performance criteria.

NOTE: Condensate cannot be lifted or discharged into pressurized return.

Figure 20-2. Cup Type Steam Humidifier

Electric Or Gas-Fired Steam Humidifiers
When steam is not available, self-contained electric or gas-fired humidifiers can meet low-capacity requirements. The primary consideration in selecting this type of humidifier is its ability to work with wide ranges in water quality. Ionic bed electric or gas-fired humidifiers are frequently selected for this capability.

Figure 20-3. Steam Separator Type Humidifier

Direct Injection Steam Humidifiers
An evaluation of three performance characteristics is essential to understand the advantages steam holds over other humidification media:

- Conditioning
- Control
- Distribution

The humidifier must condition the steam so that it’s completely dry and free of significant particulate matter. Response to control signals must be immediate, and modulation of output must be precise. Distribution of steam into the air must be as uniform as possible. Inadequate performance in any of these areas means the humidifier will not meet the basic humidification requirements.

Direct injection steam humidifiers are available in three basic types: specially designed steam panels, steam cups and the steam separator.

Specially designed steam panel systems incorporate advanced engineering in addressing unique applications where vapor trail is of prime concern.

Steam cup humidifiers receive steam from the side of the cup, which theoretically permits the condensate to fall by gravity to the steam trap. However, in practice a great deal of the liquid moisture in the steam goes into the air flow, and the steam itself is poorly distributed.

The steam separator is a more sophisticated device which, when properly designed, meets essential performance criteria.

NOTE: Condensate cannot be lifted or discharged into pressurized return.

Electric Or Gas-Fired Steam Humidifiers
When steam is not available, self-contained electric or gas-fired humidifiers can meet low-capacity requirements. The primary consideration in selecting this type of humidifier is its ability to work with wide ranges in water quality. Ionic bed electric or gas-fired humidifiers are frequently selected for this capability.

Direct Injection Steam Humidifiers
An evaluation of three performance characteristics is essential to understand the advantages steam holds over other humidification media:

- Conditioning
- Control
- Distribution

The humidifier must condition the steam so that it’s completely dry and free of significant particulate matter. Response to control signals must be immediate, and modulation of output must be precise. Distribution of steam into the air must be as uniform as possible. Inadequate performance in any of these areas means the humidifier will not meet the basic humidification requirements.

Direct injection steam humidifiers are available in three basic types: specially designed steam panels, steam cups and the steam separator.

Specially designed steam panel systems incorporate advanced engineering in addressing unique applications where vapor trail is of prime concern.

Steam cup humidifiers receive steam from the side of the cup, which theoretically permits the condensate to fall by gravity to the steam trap. However, in practice a great deal of the liquid moisture in the steam goes into the air flow, and the steam itself is poorly distributed.

The steam separator is a more sophisticated device which, when properly designed, meets essential performance criteria.

NOTE: Condensate cannot be lifted or discharged into pressurized return.
Steam Conditioning
As steam moves through supply lines, scale and sediment may be entrained in the flow—a Y-type strainer is required to remove larger solid particles. Similarly, the condensation that occurs in the supply lines permits water droplets or even slugs of condensate to be carried into the humidifier.

Several steps within the humidifier are required to positively prevent the discharge of liquid moisture and finer particulate matter along with the humidifying steam.

The separating chamber in the humidifier body should provide the volume required for optimum velocity reduction and maximum separation of steam from condensate. Properly separated, the condensate carries a substantial portion of the significant micronic particulates with it to be discharged through the drain trap.

Steam from the separating chamber can still carry liquid mist which must be removed. Humidifiers equipped with an inner drying chamber that is jacketed by the steam in the separating chamber can effectively re-evaporate any remaining water droplets before steam is discharged. Similarly, the control valve should be integral with the humidifier. Both the humidifier and the distribution pipe should be jacketed by steam at supply pressure and temperature to prevent condensation as steam is discharged.

Only proper design of the humidifier for conditioning of steam can assure the essential levels of sanitation and a clean atmosphere. These guidelines contribute to better comfort conditions and ensure that the humidifier meets the vital physical requirements of the system.

Control of Output
In most applications, humidifiers consistently operate at a fraction of maximum output.

Humidifier control must provide immediate response and precise modulation in order to accurately maintain the required relative humidity. Faulty control can make it difficult to provide the desired humidity level, and can lead to overloading the ducts with moisture and the creation of wet spots.

Two design factors affect the accuracy of humidifier control that can be achieved—the metering valve and the actuator that positions the valve.

Precise flow control can be achieved with a valve designed expressly for the purpose of adding steam to air. Parabolic plug type valves have been established as best for this service. They permit a longer stroke than comparable industrial valves, and the plug normally extends into the orifice even with the valve in “full open” position. This facilitates full and accurate modulation of flow over the complete stroke of the valve.

Chart 21-1. Desirable modified linear characteristic curve for valves used under modulating control. The modification of true linear characteristics provides more precise control when capacity requirements are very low and the valve is just cracked off the seat.

Figure 21-1. Parabolic Plug Metering Valve
The Control Valve
The parabolic plug design also provides exceptionally high rangeability. Rangeability is the ratio between the maximum controllable flow and the minimum controllable flow of steam through the valve. The higher the rangeability of a valve, the more accurately it can control steam flow. Rangeabilities of the parabolic plug valves used in Armstrong Series 9000 Humidifiers shown in Table 22-1 are typical of the ratios that can be achieved with this type of valve.

The actuator is another important component in humidity control. Several types are available to provide compatibility with various system types. The actuator must be able to position the valve in very nearly identical relationship to the seat on both opening and closing strokes. This is essential to provide consistent, accurate metering of steam discharged by the humidifier.

By their design, electric motor modulating actuators provide true linear positioning characteristics on both opening and closing cycles. Pneumatic actuators may or may not be able to provide the precise positioning and holding characteristics essential to accurate control. Rolling diaphragm type pneumatic actuators are recommended, providing they meet the following criteria:

1. Large diaphragm area—12 sq in or more—to provide ample lifting force. This permits the use of a spring heavy enough to stabilize both the hysteresis effect and the flow velocity effect on the positioning of the valve stem versus air pressure to the actuator.
2. Diaphragm material highly resistant to wear or weakening from continuous cycling.
3. Actuator stroke long enough (in conjunction with valve plug and seat design) to provide high rangeability ratios.

All modulating actuators, whether electric or pneumatic, should incorporate a spring return. This is necessary to ensure closing the valve if there is an interruption of power or control air to the unit.

For industrial in-plant operation and for very limited duct applications, a solenoid actuator may be used to provide simple on-off operation. This type of actuator should not be specified for duct applications without a detailed analysis of the system.

Table 22-1. Steam Humidifier Valve Rangeabilities

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>Equivalent Diameter</th>
<th>Ratio of Flow Max:Min</th>
<th>Minimum Flow as % of Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2"</td>
<td>63:1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1-1/4"</td>
<td>69:1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>1-1/8"</td>
<td>61:1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>53:1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>7/8"</td>
<td>44:1</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>33:1</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>5/8"</td>
<td>123:1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>9/16"</td>
<td>105:1</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>97:1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>15/32"</td>
<td>85:1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>7/16"</td>
<td>75:1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>13/32"</td>
<td>64:1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>3/8"</td>
<td>70:1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>11/32"</td>
<td>59:1</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>5/16"</td>
<td>49:1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>9/32"</td>
<td>40:1</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>1/4"</td>
<td>31:1</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>7/32"</td>
<td>24:1</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>3/16"</td>
<td>18:1</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>5/32"</td>
<td>59:1</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>1/8"</td>
<td>37:1</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>7/64"</td>
<td>28:1</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>3/32"</td>
<td>21:1</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>5/64"</td>
<td>15:1</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>1/16"</td>
<td>10:1</td>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>

Chart 22-1. Desirable Operating Characteristic for Pneumatic Actuators

Position of valve is very nearly identical on both opening and closing strokes at any given air pressure to the actuator.
Distribution of Steam

The third essential factor in proper humidifier design is distribution. Steam must be discharged as uniformly as possible into the air to permit the fastest possible absorption without creating damp spots or saturated zones.

In normal ducts, a single distribution manifold installed across the long dimension will provide good distribution of steam. In large ducts or plenum chambers, it may be necessary to broaden the pattern of vapor discharge to achieve the required distribution, thus requiring multiple manifolds from single or multiple humidifiers.

Humidification for industrial areas without central air handling systems is customarily achieved with unit humidifiers discharging steam directly into the atmosphere. Proper mixing of steam and air can be accomplished in two ways. A dispersing fan may be mounted on the humidifier or a unit heater can be positioned to absorb and distribute the water vapor.

Operating Noise

In addition to these crucial performance characteristics, operating noise is a consideration in selecting steam humidifiers for areas where quiet operation is essential or desirable, i.e., hospitals, office buildings, schools, etc.

The noise of escaping steam is generated at the control valve. Muffling materials around the valve are necessary to minimize this noise.

Note: See Page 26 for multiple manifold hook-ups.